MARKSCHEME

May 1999

BIOLOGY

Higher Level

Paper 2

SECTION A

- 1. (a) (i) (Award 2 marks)

 (accept answers referring to respiration, metabolic, breathing or ventilation rates)
 as temperature rises rate falls then levels off / reaches a plateau;
 plateau reached above 10°C;
 - (ii) (Award 2 marks maximum)
 higher (cell) respiration rate / metabolic rate to generate heat;
 heat needed to maintain body temperature / keep (egg) warm;
 rate from -10°C upwards is the base rate / basal metabolic rate / normal rate;
 - (b) (Award 2 marks)
 captive birds 16.2 kg;
 wild birds 13.3 kg;
 negative sign not necessary
 penalize once only if units not given using U-1 notation
 - (c) (Award 2 marks maximum)
 both groups lose most of their lipid;
 captive birds lose more of their lipids than wild ones;
 11.2 kg versus 9.6 kg / 93% lost versus 81% / other valid figures comparing change;
 - (d) (Award 2 marks)
 higher (cell) respiration rate / metabolic rate / more fat oxidised in captive birds;
 water is produced in (cell) respiration / oxidation of substrates;
 - (e) (i) (Award 1 mark maximum)
 captive birds take in more oxygen;
 Captive birds inhale / exhale more;
 higher (cell) respiration rate;
 - (ii) (Award 1 mark maximum)
 more water loss in captive birds so they need to take in more water,
 birds in tight groups have less access to snow on ground:
 - (f) (Award 3 marks maximum) emperor penguins have to maintain body temperature in very cold conditions; forming groups reduces surface area exposed; forming groups reduces heat loss; forming groups reduces need for heat generation; conservation of food reserves / food/lipids used less quickly; helps keep the egg warm enough; ref to value of lipids for insulation;

- 2. (a) (Award 2 marks)
 diphtheria / whooping cough / tetanus / other;
 measles / polio / rubella / AIDS / other;
 - (b) (Award 2 marks maximum) fungi; protozoa; flatworms; roundworms;
 - (c) (Award 3 marks) vaccine injected / ingested / vaccination given; contains weak/killed form of the bacterium/virus; antibody production (by white blood cells) stimulated; antibodies / memory cells persist; refer to booster shots / repeated vaccination;
- 3. (a) (Award 1 mark) polygenic;
 - (b) (Award 2 marks)
 AaBb;
 blue flowered;
 - (c) (Award 5 marks maximum)
 all gametes shown with one allele of each gene only;
 four homozygous genotypes shown AABB AAbb aaBB and aabb;
 four double heterozygous genotypes shown AaBb;
 all of the eight other geneotypes correct;
 all of the phenotypes correct;
 - (d) (Award 1 mark) 9 blue 3 red and 4 white;
 - (e) (Award 1 mark)
 gene A converts white to red and gene B converts red to blue;

SECTION B

(Remember, up to TWO 'quality of construction' marks per essay)

- 4. (a) (Award 1 mark for any of the below; up to a maximum of 8 marks) condensation / super coiling; chromatids/identical DNA molecules linked by centromeres; microtubles/spindle fibres grow from the centrioles/centrosomes; centrioles/centrosomes move to the poles; nuclear membrane breaks down; microtubules from the two poles connect to the kinetochores / centromere; centromeres divide; microtubules pull chromosomes/identical DNA molecules to the poles; tubulin molecules detached by centromere/microtubule motor at centromere; nuclear membrane forms around chromosomes at each pole; chromosomes become aligned on the equator;
 - (b) (Award 1 mark for any of the below; up to a maximum of 5 marks) cells in a tissue all have the same structure and function; cells in a tissue all differentiate in the same way; organs contain different tissues; to carry out the function of the organ more than one tissue is needed; organ systems consist of two or more organs; to carry out the same function in different parts of the body; to carry out different parts of a common overall process; tissues are made of cells; any named example of a tissue plus any named example of an organ;
 - (c) (Award 1 mark for any of the below; up to a maximum of 5 marks)

 Advantages of light microscope
 colours of material from tissues/organ can be seen;
 living material can be studied / less damage to specimen;
 cell activities / movement can be studied;
 larger field of view;

Advantages of electron microscope greater resolution; smaller structures can be seen / greater magnification;

(Award up to 2 marks for the following overall assessment) electron microscope better for cells / small structures; but light microscope better for organs;

(a) (Award 1 mark for any of the below; up to a maximum of 8 marks) reactions take place in the stroma; carbon dioxide reacts with RuBP; catalysed by RuBP carboxylase;
 GP formed;
 GP converted to triose phosphate; reduction reaction involving use of NADPH + H⁺; energy from ATP also needed from this conversion; triose phosphate converted to glucose(phosphate)/starch; RuBP regenerated from triose phosphate; Calvin cycle;

(b) (Award 1 mark for any of the below; up to a maximum of 6 marks)
light independent reactions involve ATP/NAPH + H+ / intermediates which are made in light dependent reactions;
Supply of ATP/NAPH + H+ / intermediates used up / runs out in the dark;
ATP and NADPH + H+;
GP therefore not reduced /converted to triose phosphate;
RuBP therefore not regenerated;
carbon dioxide fixation therefore stops;
GP accumulates;
stomata close in the dark;
carbon dioxide is therefore not absorbed;

(c) (Award 1 mark for any of the below; up to a maximum of 4 marks)
 CO₂ needed for photosynthesis but not for germination;
 O₂ needed for germination but not for/inhibits photosynthesis;
 light needed for photosynthesis but not for/sometimes for/also for germination;
 red and blue light best for photosynthesis but red only for germination;
 heat stimulates both photosynthesis and germination;
 excessive heat inhibits both photosynthesis and germination;

- 6. (Award 1 mark for any of the below; up to a maximum of 8 marks) (a) synthesised by ribosomes; free ribosomes/ribosomes not attached to ER; mRNA is translated; mRNA binds to the ribosome; tRNAs bring amino acids; anticodon on tRNA binds to codon on mRNA; formation of peptide linkage; two tRNA's can bind to the ribosome at once; growing polypeptide linked to amino acid on tRNA; ribosome moves on down mRNA; 5' to 3'; ref to stop/start codons; coenzymes added;
 - (b) (Award 1 mark for any of the below; up to a maximum of 4 marks)
 in both models substrate binds to active site;
 substrate fits active site exactly in lock and key, but does not in induced fit;
 substrate / active site changes shape in induced fit, but does not in lock and key;
 in both models an enzyme substrate complex is formed;
 in lock and key binding reduces activation energy but in the induced fit change to
 substrate reduces activation energy;
 lock and key model explains narrow specificity but induced fit allows broader specificity;
 induced fit explains competitive inhibition, but lock and key does not;
 - (c) (Award 1 mark for any of the below; up to a maximum of 6 marks) competitive inhibitor has similar shape/structure to the substrate; therefore it fits to the active site; no reaction is catalysed so the inhibitor remains bound; substrate cannot bind as long as inhibitor remains bound; only one active site per enzyme molecule; substrate and inhibitor compete for the active site; therefore high substrate concentrations can overcome the inhibition; as substrate is used up ratio of inhibitor to substrate rises; named example of inhibitor plus inhibited enzyme / process / substrate;

7. (a) (Award 1 mark for any of the below; up to a maximum of 8 marks) in the germ layer/germinal epithelium; spermatogonia produced; mitosis to allow many cells to be produced/continuous cell production; cell growth; enlarged cells are primary spermatocytes;

meiosis;

diploid to haploid;

two divisions of meiosis;

secondary spermatocytes produced by first division/carry out second division; spermatids formed by (second division of) meiosis:

differentiation into spermatozoa/mature sperm cells;

growth of tail / acrosome / other feature;

ref to role of Sertoli cells;

(b) (Award 1 mark for any of the below; up to a maximum of 5 marks) LH levels rise and stimulate more testosterone production; testosterone levels are very low before puberty; testosterone levels rise during puberty; testosterone causes puberty / secondary sexual characteristics; testosterone has many target organs in the body; example of target organs and response; ref to sequence of changes being related to level of testosterone needed:

testosterone stimulates sperm production;

FSH levels rise and cause sperm maturation;

(c) (Award 1 mark for any of the below; up to a maximum of 5 marks) ethical arguments against intercourse should only be used for procreation / contraception is against natural law / against religious beliefs; contraception encourages promiscuity; reference to death of embryos damage to traditional family structures;

(Award 4 points maximum) ethical argument for prevent unwanted children / children who cannot be cared for:: helps reduce human population growth; reduces suffering due to STDs/prevent AIDS; reduces abortion rate; mother's right to choose;